
Alcohol effect on GPe connectivity 

Using seed-to-voxel (i.e. whole brain) connectivity analyses - with GPe as seed region - provided the 

following significant results. Alcohol directly affected the GPe activity demonstrated by the shifting of the time 

series of the BOLD signal (Supplementary Figure 1A). See Supplementary Table 1 and Supplementary Figure 1B 

for seed-to-voxel connectivity results. These results are reported at a voxel-height threshold of p<0.001 and an 

extent threshold of p<.05 FDR corrected for multiple comparisons. 

Right GPe connectivity changes 

The seed-to-voxel functional connectivity revealed significant decreases in connectivity between the right 

GPe seed and the bilateral NAcc, bilateral putamen, subgenual anterior cingulate (ACC), bilateral caudate, and 

left orbitofrontal cortex (OFC) following IV alcohol infusion.  Additional regions that significantly showed 

decreased connectivity were in the left cerebellum, right frontal pole and right middle frontal gyrus. We observed 

a significant alcohol-induced increase in connectivity between the right GPe seed and the right precentral gyrus, 

areas within the frontal pole, left OFC, inferior frontal gyrus (pars triangularis), left middle/superior temporal gyri 

(posterior portion), left occipital fusiform gyrus, and lateral occipital cortex (inferior division). 

Left GPe connectivity changes 

Reduced connectivity after alcohol infusion with the left GPe was detected in areas of the bilateral 

thalamus, bilateral caudate, right pallidum, and the left NAcc, putamen, and subgenual ACC/OFC. We also found 

significantly reduced left GPe connectivity with subregions of the frontal cortex (middle/superior gyri, right 

frontal pole, right central operculum, left precentral gyrus), cerebellum, precuneus, temporal cortex (left 

middle/superior gyri, left temporal pole, Heschl’s gyrus), left angular gyrus, and left superior lateral occipital 

cortex. Alcohol-induced increases in connectivity with the left GPe were found in the bilateral paracingulate, 

medial frontal and superior frontal gyri, frontal pole, and insular cortices. 

Supplementary discussion 

We aimed to translate the preclinical finding from Abrahao et al. (2017) through an IV alcohol infusion 

paradigm. We measured resting-state functional connectivity in “sober” (i.e., BAC = 0.00 g/dl) and “binge 

drinking” (i.e., BAC = 0.08 g/dl) states. We did see functional connectivity between the right GPe and striatum 

regions decrease bilaterally in the “binge drinking” state, consistent with the rodent model. Given the theorized 

role of the GPe as part of the arkypallidal pathway, alcohol can be interpreted here as disrupting the ability of the 

GPe to send signals to stop or pause before actions [2].   



In addition to the hypothesized dorsal striatum regions (i.e., caudate, putamen), we saw that alcohol 

reduced connectivity between the GPe and the ventral striatum (i.e., NAcc). This was unexpected given the lack 

of evidence for direct structural connectivity between these regions. However, there are several methodologic 

differences between work in animal and human models that may explain this finding. First, BOLD signal has low 

resolution in comparison to patch-clamp recordings. Electrophysiology has been used to validate the basal ganglia 

circuitry within a BOLD connectivity context using an optogenetic-resting state fMRI method [3], but given the 

GPe has common projections to the subthalamic nucleus with the ventral pallidum [4, 5], which we would expect 

to functionally connect with the NAcc, it is possible that connectivity signal from that region is confounding the 

GPe connectivity signal in this study. Moreover, resting state functional connectivity is an indirect measure of 

pathway communication and is unable to use timing to establish directionality. Thus, it is possible this finding 

may reflect indirect connectivity, such as through the ventral tegmental area [6]. 

We also unexpectedly found that alcohol infusion decreased connectivity between GPe and cerebellar / 

frontal pole areas, and increased connectivity between GPe and PFC / temporal gyri. These are not regions found 

to be directly connected to the GPe and involved in stop-signaling. However, as highlighted in the previous 

paragraph, these findings may reflect indirect connectivity. For example, cerebellar regions are connected to the 

CM/Pf complex of the thalamus [7], which is thought to be affected by GPe activity [5]. Our finding that alcohol 

increased connectivity between GPe and PFCl/temporal areas is particularly unexpected. However, previous 

studies have shown that substance dependent individuals have increased connectivity during rest in executive 

control networks [8] and between NAcc and dlPFC regions [9]. Given that resting state is typically associated 

with reduced executive control function, this increased coupling between GPe and lateral PFC activity may reflect 

impaired functioning. One possible mechanism underlying this finding could be that alcohol is impacting the 

function of long-range GABAergic projections between the GPe and frontal gyrus [10]. 

Our connectivity findings followed a somewhat lateralized pattern, where connections to left side regions 

from both right and left GPe increased with alcohol administration and connections to right side regions 

decreased. Alcohol has previously been shown to reduce the lateralization of specific functions, particularly in 

terms of greater left lateral increases and right lateral decreases in connectivity at rest [11]. The greater left-side 

increases in connectivity (both from ipsi- and contralateral GPe regions) may reflect this pattern as well. We 

would point out that there were mostly contralateral alcohol-decreases in connectivity from the left GPe, 

suggesting reductions in connectivity on the right side. We would also point out from the perspective of the role 

of the GPe pathways, previous work finds that connectivity strength in right-lateralized hyperdirect and indirect 

basal ganglia/frontal pathways predicted successful response inhibition (Jahfari et al., 2011).  On the other hand, 

increases in left ipsilateral connectivity in individuals with chronic alcohol use has been associated with 



compensatory function [12]. Taken together, the lateralization pattern may reflect alcohol related impairment of 

standard inhibitory pathways and increases in “alternative” neural communication routes. 
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